國立陽明交通大學試題紙

111 學年度第一學期 博士班資格考

科目:人工智慧 A

日期: 112年1月10日 第1頁共2頁

請 "✓" 明 ✓不可看書 可看書

* 請將答案依題號順序寫入答案卷

答題時字跡需工整,否則不予計分。Write your answers legibly; otherwise you will get zero score.

- 1. (10 pts total) Consider a concept learning problem in which an instance x (i.e. a data entity) is a real number, and the hypothesis (i.e. model) language is an interval over the real numbers, e.g. a < x < b, where a and b are constants. For example, a hypothesis 3.2 < x < 10.86 will classify any instance between 3.2 and 10.86 as positive, and any other as negative.
 - a. (5 pts) Explain why there cannot be a maximally specific consistent hypothesis for any set of positive training instances (Be precise and concise).
 - b. (5 pts) How will you modify the hypothesis language a bit so there can be a maximally specific consistent hypothesis for any set of positive training instances?
- 2. (25 pts total) Given a data table of employees as shown below, you are asked to apply 1-nearest neighbor to predict ID#8's Income.

NOTE. You are required to show your calculation process, but no need to present the exact numbers.

		, , ,	our carearation proc	200, 200 110	need to present the
ID#	Years of past Years of		Working hours	Height	Income (H or L)
	experience	grad-level	per year	(mm)	
		education			
1	0	1	480	1700	L
2	0	0	510	1500	L
3	5	2	500	1600	Н
4	5	5	510	1700	Н
5	5	5	460	1500	Н
6	1	0	490	1600	L
7	4	1	460	1600	L
8	4	2	500	1500	?

- a. (5 pts) According to Minkowski L₁ distance, what is your prediction?
- b. (10 pts) Identify two issues from your prediction above (e.g., prediction reasonable to you? relevance? scales? Etc.) Be precise and concise.
- c. (10 pts) How are you going to resolve the issues? Be precise and concise.
- 3. (15 pts total) You've already grown a classification tree from a training data set. Both the tree and training data are shown below. To avoid overfitting, you decide to perform postpruning based on a validation data set also provided below, starting with the left-most bottom subtree.
 - (a) (3 pts) Is the tree consistent with the training data?
 - (b) (6 pts) Will you keep or remove the left-most bottom subtree? Briefly explain why.
 - (c) (6 pts) Show the simplest tree after you check the left-most subtree, and mark the predicted class for each leaf of the new tree.

◎請用深黑色鋼筆或原子筆出題

命題老師簽名:

國立陽明交通大學試題紙

111 學年度第一學期 博士班資格考

科目:人工智慧 A

日期: 112年1月10日 第2頁共2頁

Training data set

	F1	F2	F3	F4	F5	F6	Т
#1	0	0	0	0	0	0	+
#2	0	0	0	1	0	0	_
#3	0	0	1	0	0	0	+
#4	0	1	0	0	0	0	
#5	1	0	0	0	0	0	_
#6	1	1	0	0	0	0	+
#7	0	0	0	0	0	1	+

Validation data set

				T			
	F1	F2	F3	F4	F5	F6	Т
&1	0	0	0	1	0	1	+
&2	0	0	0	0	1	0	+
&3	0	0	0	1	1	1	+
&4	0	0	1	0	0	1	+
&5	0	1	0	0	0	0	_
&6	1	0	0	0	1	1	_
&7	1	0	1	1	1	1	_

國立陽明交通大學試題紙

111 學年度第一學期 博十班資格考

科目:人工智慧 B

日期: 112年1月10日 第1頁共1頁

請 "✓" 明 ✓不可看書 可看書

* 請將答案依題號順序寫入答案卷

答題時字跡需工整,否則不予計分。Write your answers legibly; otherwise you will get zero score

- 1. [8%] For breadth-first search, depth-first search, and A* algorithms:
- (a) Give the pseudo-code of each. Clearly explain the information you use.
- (b) What are the standard data structures used for the frontier in each?
- (c) Describe the form of the evaluation function used in A*. What condition(s) are required to ensure that it finds an optimal path?
- 2. [12%] For a n-queen problem:
- (a) Describe, in general English, what a n-queen problem is.
- (b) Give a state specification of a n-queen problem, so that it can be solved by a search algorithm.
- (c) Define a cost function of a n-queen problem, and then describe a local search algorithm that finds the solution of a n-queen problem by cost minimization. Be specific about the steps used in your algorithm.
- **3.** [15%] From this game state of the tic-tac-toe game, and the next player (MAX) is 'X':

- (a) Draw the 2-ply game tree.
- (b) Use the following evaluation function to compute values of the leaf nodes in (a):

"the count of the player's unblocked two-in-a-lines, minus the count of the opponent's unblocked two-in-a-lines"

Note: An unblocked two-in-a-line is any line (vertical, horizontal, or diagonal) where two spaces are occupied by the same player and the third space of the line is still unoccupied.

- (c) Use the minimax rule to determine the action to be taken by X. Note: If there are multiple actions that are equally good, indicate them all.
- 4. [15%] Inference in first-order logic:
- (a) Consider this English sentence:

A cat that catches mice is a good cat.

Give the equivalent sentence in the form of first-order logic.

- (b) Describe the meanings and differences between "functions" and "predicates" in first-order logic. Also indicate all the functions and predicates, if any, that are used in your answer in (a).
- (c) For this fact, also convert it to first-order logic:

Tommy, Mary's cat, catches mice.

- (d) Use the sentences in (c) and (d) to prove that Tommy is a good cat.
- (e) Name the inference rules used in (d), and give their general forms.

◎請用深黑色鋼筆或原子筆出題

命題老師簽名: